The Modern Computer Science Degree

on Wednesday, March 23 @ 3:27pm

Coding Bootcamps and Computer Science degrees are popular routes for students to launch careers in software development. Coding bootcamps average 12 weeks in length, and teach practical skills like building web applications from scratch. They prepare students for a job as an entry-level web developer, intern, or freelancer. Computer science programs average 4 years in length, and teach a wide range of concepts in programming, algorithms, advanced math, statistics, and general electives which may not correlate with computer science.

Coding bootcamps and computer science programs are the two most prevalent ways to start a career as a software professional. But coding bootcamps lack computer science fundamentals, and computer science programs often lack practical experience, and are extreme commitments in time and expense. The gap between what you learn in a coding bootcamp and computer science degree is why we created the Software Engineering Track.

software-engineering-job-critical-skills

Bloc’s Software Engineering Track teaches practical skills and combines them with advanced computer science topics and open-source software development. It teaches you everything you need to be a professional software engineer, and leaves out everything you don’t. We know this because we built the program after consulting with companies like Google, Facebook, and Twitter. After consulting with top engineering teams, we developed this chart to represent the programming learning curve:

Programming-Learning-Curve

We believe that 2,000 hours of focused study and practice are essential for becoming a software engineer. This chart shows where you’ll be after graduating from a coding bootcamp — which is between 500 and 1,000 hours — but it doesn’t explicitly illustrate why our Software Engineering Track is more effective than a computer science degree. Let’s explore four reasons why Bloc’s Software Engineering Track prepares you for a career in software engineering more effectively than a computer science degree.

For more information on why coding bootcamps often fall short, [read this blog we wrote about the topic](NEED URL).

cost-and-time

Time is a Feature, When It’s Focused

A computer science program is four years worth of full-time study. This roughly totals to 6,000 learning and study hours. Thousands of those hours are unlikely to directly help you once you get a job though. A computer science program forces you to take electives, and advanced classes on artificial intelligence, history of computing, and theory that are not easily translatable to working as a professional software engineer. It’s not that these are bad things to learn – they may provide some useful life lessons – but they are not essential for becoming a software engineer. Bloc’s program includes 2,000 hours of learning and study hours, and every single hour is meaningful in becoming a software engineer.

Spending one year learning everything you need is a better use of time than spending four years learning many things you don’t. There’s plenty of time to learn new things in life, but when you’re paying to learn, the topics should be directly related to the outcome.

Avoid Life-Altering Debt

Computer science programs range in cost based on factors like residency, school, and financial status. A four year degree can easily reach into the six figures. For this reason, many students are forced to take out loans with interest rates between 4% and 6%. This is life-altering debt that will likely take years to pay off.

Bloc’s Software Engineering Track is not cheap — $24,000 is significant amount of money — but with reasonable payment options this amount should not be life-altering. In fact, financing as low as $750/month is available, which allows you to pay for the course after getting a job. Also, Bloc offers a tuition reimbursement guarantee that if you are not able to find a job as a software engineer with a starting salary of at least $60,000, you’ll be refunded in full. No computer science program offers such a promise.

At $24,000, Bloc’s program is a fraction of the cost of many computer science programs, and offers a tuition reimbursement guarantee on top of that. Your investment in Bloc is much smaller than it would be in a computer science program, and also much safer due to the reimbursement policy.

Return on Investment

ROI is a financial acronym that stands for “return on investment”. It explains what you’ll earn as a result of an investment. Not only is Bloc’s program a fraction of the cost of a computer science degree, but it also employs you faster. After one year, you’ll start earning a full-time salary as a software engineer. The return on your investment of $24,000 will be greater proportionally to that of an investment in a computer science degree, and it will also come quicker. The ROI you realize from a smaller investment and earning at a faster pace can have exponentially positive results over decades. But most importantly, you’ll also start a career doing meaningful work. Software is eating the world because it solves real problems. As a software engineer, you’ll be able to positively impact other people’s lives through software, and the value and satisfaction you realize will be incalculable.

mastery

Path to Mastery

No matter how great a computer science program, coding bootcamp, or our Software Engineering Track is, it will always pale in comparison to the experience you have working as a professional. The lessons you learn in a classroom setting will never match what you learn when you’re on the job. The apprenticeship model – which we employ in the Software Engineering Track – is an improvement over the classroom, as it provides training and lessons in a practical setting, but even it doesn’t match the effectiveness of learning on the job.

To become a master at something, you have to practice a lot, and you have to practice in realistic settings. There is nothing more realistic than practicing your skills when you are being paid to do so. In this respect, you want to be careful not to spend too much time in a classroom.

The final phase in the Software Engineering Track is an Open-Source Apprenticeship, where you work on open-source software with other professional engineers. In addition to learning through practical work, you’ll build a remarkable resume of open-source contributions. After the Open-Source Apprenticeship, you’ll get a job solving real problems for a real company four times faster than you would with a computer science degree.

For more of our thoughts on learning and mastery, [read about mastering software engineering](NEED URL).

Time, Money, ROI, and Learning

We aren’t so extreme in our views that we think computer science degrees should be abolished. They do serve a purpose for aspiring robotics and machine learning engineers, and they do many things well in general. But we feel strongly that they can be improved, and the Software Engineering Track is what we built to prove that. In a shorter period of time, with less of an investment, a safer investment, a faster return on your investment, and more effective learning, you will have a better outcome with the Software Engineering Track, and you’ll start the path to mastery sooner than you would by enrolling in a computer science program.

If you want to learn more about Bloc’s Software Engineering program and how it prepares you to land a job developing software, join us at an online info session. We’ll dive into the curriculum, what it’s like to be a Bloc student, and details about our 100% tuition refund guarantee.

More advice on changing careers

Should I Become a Software Engineer or a Junior Web Developer?

The software industry uses words like hacker, programmer, coder, developer, engineer, and architect to differentiate between similar-but-not-identical skill sets. These terms are poorly defined, which causes ambiguity, and their appropriate uses are still debated today:

Bloc offers two related Tracks for students who desire to learn these skills: a Full Stack Web Developer Track, and a Software Engineer Track. Since the definition of these terms can be ambiguous, let’s be explicit about what we mean. (Others may use these terms differently.)

fst-vs-set

If you graduate from the Full Stack Web Development Track, you’ll be able to develop and maintain web apps. You will learn two programming languages, how to create databases, advanced styling techniques, and more.

But there exists a class of problems not covered by this Track. As an example, consider this question: “Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?” It’s called the Traveling Salesman Problem because a salesman must travel through many cities and make the best use of their time. There are many problems like this.

For example, Airbnb might want its users to create search queries like “Given a city and a list of Airbnb rentals, what is the cheapest way to rent Airbnbs for three straight months, using only Airbnbs that have a dishwasher, a washer/dryer, or both?” A junior web developer may not be prepared to write code to efficiently answer that question. A software engineer grad is armed with techniques and skills that make them capable of solving these open-ended and complex problems.

Here’s an analogy outside of software development: a Full Stack Web Development Track graduate is like a construction worker who builds bridges. Bridge-building is highly skilled labor, requiring lots of practice and knowledge of different materials, approaches, scenarios, and designs. A great bridge-builder can adapt their approach to different types of gaps, different weight requirements, etc. But ultimately this person is combining existing tools to construct something, not designing something new.

A Software Engineering Track graduate is like an architect or civil engineer. This person understands the theory behind everything – not just which metal to use where, but why: how to measure it and prove it. This person also understands at a more fundamental level how the sausage is made: what goes into the metal alloy, or how the specific curve of a support beam is important. They are uniquely qualified to design new bridges, and make more creative, iterative improvements on existing bridges.

The former will likely always be employable, at least in areas with bridges. But the latter is indispensable to society: without them, we can never evolve. Ultimately, graduates of the Software Engineering Track can solve harder problems, handle more complexity, and create more robust software.

Now that you know the difference, consider which track to enroll in.

Which Bloc Track Should I Choose?

Given your hard work and diligence, Bloc Tracks will change your career and your life. All Tracks teach professional-grade software development skills, include dedicated one-on-one mentorship from an industry expert, and come with exclusive access to Bloc’s Employer Network and Career Services team. Each Track follows the tried-and-true Bloc approach of building real software, starting with carefully sequenced and technically rigorous curriculum and transitioning to independent work at the end.

In the Full Stack Web Developer Track, you learn the critical skills for modern web development, including Ruby on Rails, JavaScript, HTML, and CSS. You practice these by creating a variety of web apps during your course. Graduates of this Track are qualified to work as junior web developers.

Here are the main differences:

fst-vs-set-chart

Compared to the Full Stack Track, the Software Engineering Track (SET) covers more advanced topics, and requires one thousand hours of additional work. Both are premium experiences designed to help you get a specific outcome: new skills and a new job. SET’s length provides its students with enough time to master the advanced skill set. Whichever direction you go, a Bloc Track will teach you to write outstanding software, improve your career, and enrich your life.

Should I Become a Software Engineer or a Junior Web Developer?
What Companies Look for in Software Developers

Software developer positions are highly desired. Just as astronauts, Supreme Court justices, and Hogwarts professors must have a variety of skills and knowledge, software developers have a combination of technical knowledge and soft skills. This post explores the skills that many companies look for.

Familiarity With Multiple Languages

While many software developers find themselves working primarily in only one language, it’s helpful to have experience in others. Fluency in multiple languages exposes developers to different design patterns and allows them to work on a wider variety of projects. Software developers working in web development may want experience in a backend language like Ruby or Python and a frontend language like JavaScript or CoffeeScript. In iOS app development, developers should know Objective-C and Swift. A person who knows multiple languages is called a polyglot, and this skill set is highly desired.

Knowledge of Modern Software Development Tools

To be effective, software developers need to know how to use modern tools:

– version control software (like Git) – issue trackers (like Jira and Pivotal Tracker) – web computing services (like Amazon AWS and Heroku) – database programming software (like SQLite and PostgreSQL)

The knowledge of these is critical to the duties of a developer. Without knowing the tools that modern teams use, it may be difficult to collaborate with team members, organize source code, or prioritize tasks.

Strong Negotiation Skills

Software developers are responsible for implementing new features. As part of this process, they’ll need to work with developers and engineers on their team to select a specific approach. Debate, disagreement, and discussion are common, so negotiation, conflict management, and compromise skills are very important. While the computer programming part of the job is critical, software developers are expected to be team players who contribute more than simply churning out code.

Understanding of Algorithms, Data Structures, and Complexity

Great code should be understandable and maintainable, but it should also perform efficiently. To write performant code, software developers need to understand how data structures, algorithms, and complexity relate. Different structures for storing data (like queues, graphs, trees, hash tables, etc.) can improve the way data is organized. Algorithms can provide different ways to search or sort this data, and different algorithms are preferred for different use cases. Complexity measurement, analysis, and optimization allows us to describe, measure, and improve the performance of a solution for a given problem.

Combined, these skills allow software engineers to write code that runs faster or takes up less space. Everybody hates to wait, so this work can vastly improve a user’s enjoyment of a product. Great performance can also help a product survive longer because it has a good foundation.

Task Organization and Management

Software engineers are given a wide variety of tasks from small but critical bug fixes to architecting a major project. While issue trackers like Jira and Pivotal Tracker can help organize these tasks, engineers must comprehend the tasks and their relative priority, consider co-workers and customers whose work depends on these tasks, and organize their workflow accordingly. Critical thinking about task and workflow management is an important part of software development.

Practice

Whether it’s previous jobs, open-source software contributions, or your own personal projects, software engineers are expected to have practice working with large and complex code bases. This helps them understand how different parts of a program work together, which enables them to effectively add features and understand the cause of bugs.

What Companies Look for in Software Developers